Deficiency of phosphofructo-1-kinase/muscle subtype in humans impairs insulin secretion and causes insulin resistance.
نویسندگان
چکیده
Non-insulin-dependent diabetes mellitus (NIDDM) is caused by peripheral insulin resistance and impaired beta cell function. Phosphofructo-1-kinase (PFK1) is a rate-limiting enzyme in glycolysis, and its muscle subtype (PFK1-M) deficiency leads to the autosomal recessively inherited glycogenosis type VII Tarui's disease. It was evaluated whether PFK1-M deficiency leads to alterations in insulin action or secretion in humans. A core family of four members was evaluated for PFK1-M deficiency by DNA and enzyme-activity analyses. All members underwent oral and intravenous glucose tolerance tests (oGTT and ivGTT) and an insulin-sensitivity test (IST) using octreotide. Enzyme activity determinations in red blood cells showed that the father (46 yr, body mass index [BMI] 22. 4 kg/m2) and older son (19 yr, BMI 17.8 kg/m2) had a homozygous, while the mother (47 yr, BMI 28.4 kg/m2) and younger son (13 yr, BMI 16.5 kg/m2) had a heterozygous PFK1-M deficiency. DNA analyses revealed an exon 5 missense mutation causing missplicing of one allele in all four family members, and an exon 22 frameshift mutation of the other allele of the two homozygously affected individuals. The father showed impaired glucose tolerance, and the mother showed NIDDM. By ivGTT, both parents and the older son had decreased first-phase insulin secretion and a diminished glucose disappearance rate. The IST showed marked insulin resistance in both parents and the older, homozygous son, and moderate resistance in the younger son. PFK1-M deficiency causes impaired insulin secretion in response to glucose, demonstrating its participation in islet glucose metabolism, and peripheral insulin resistance. These combined metabolic sequelae of PFK-1 deficiency identify it as a candidate gene predisposing to NIDDM.
منابع مشابه
The Effect of Eight Weeks Aerobic and Resistance Training on AMP-Activated Protein Kinase (AMPK) Gene Expression in Soleus Muscle and Insulin Resistance of STZ-Induced Diabetic Rat
Background: AMPK regulation is one of biggest target in T2D and metabolic syndrome research. Therefore, the present study is aimed to investigate The effect of 8 weeks aerobic and Resistance training on AMP-activated protein kinase (AMPK) gene expression in soleus muscle and insulin resistance of STZ-induced diabetic rat. Methods: The research method of present study was experimental. For this...
متن کاملThe Effect of Treating Vitamin D Deficiency or Insufficiency on Serum Adiponectin, Leptin and Insulin Resistance of Type 2 Diabetes Mellitus Patients: A Pilot Study
Vitamin D deficiency is considered as one of the most prevalent healthcare problems in the world. Vitamin D contributes to insulin synthesis and secretion. Deficiency of vitamin D leads to insulin resistance which is the major cause of type 2 diabetes mellitus. We aim to evaluate the effect of treating vitamin D deficiency or insufficiency on serum adiponectin, leptin, and leptin to adiponectin...
متن کاملThe Effect of Treating Vitamin D Deficiency or Insufficiency on Serum Adiponectin, Leptin and Insulin Resistance of Type 2 Diabetes Mellitus Patients: A Pilot Study
Vitamin D deficiency is considered as one of the most prevalent healthcare problems in the world. Vitamin D contributes to insulin synthesis and secretion. Deficiency of vitamin D leads to insulin resistance which is the major cause of type 2 diabetes mellitus. We aim to evaluate the effect of treating vitamin D deficiency or insufficiency on serum adiponectin, leptin, and leptin to adiponectin...
متن کاملTargeted disruption of ROCK1 causes insulin resistance in vivo.
Insulin signaling is essential for normal glucose homeostasis. Rho-kinase (ROCK) isoforms have been shown to participate in insulin signaling and glucose metabolism in cultured cell lines. To investigate the physiological role of ROCK1 in the regulation of whole body glucose homeostasis and insulin sensitivity in vivo, we studied mice with global disruption of ROCK1. Here we show that, at 16-18...
متن کاملMuscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase in human skeletal muscle.
Physiological stress associated with muscle damage results in systemic insulin resistance. However, the mechanisms responsible for the insulin resistance are not known; therefore, the present study was conducted to elucidate the molecular mechanisms associated with insulin resistance after muscle damage. Muscle biopsies were obtained before (base) and at 1 h during a hyperinsulinemic-euglycemic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 100 11 شماره
صفحات -
تاریخ انتشار 1997